博客
关于我
【SparkSQL】DataSet、DataFrame 介绍
阅读量:332 次
发布时间:2019-03-04

本文共 2200 字,大约阅读时间需要 7 分钟。

SparkSQL DataSet 和 DataFrame 介绍

目录

  • DataSet 介绍
    • DataSet 是什么?
    • DataSet 查询方式
    • DataSet 的底层实现
    • DataSet 转为 RDD
  • DataFrame 介绍
    • DataFrame 是什么?
    • DataFrame 的创建方式
    • DataFrame 的数据操作案例
  • DataFrame 与 DataSet 的区别
  • Row 对象

一、DataSet 介绍

1. DataSet 是什么?

DataSet 是一个强类型,并且类型安全的数据容器,提供了结构化查询API和类似 RDD 一样命令式API。它能够在编译时确保操作的类型安全性,适用于需要强类型操作的场景。

2. DataSet 查询方式

DataSet 提供了三种查询方式:

  • RDD 相似的强类型 API:支持通过对象字段直接操作。
  • 弱类型 API:支持通过字段名或 SQL 表达式查询。
  • SQL 查询:直接通过 SQL 表达式进行查询。
  • 3. DataSet 的底层实现

    DataSet 的底层实际上是基于 InternalRow(Catalyst Row)的 RDD。无论 DataSet 中存储的是什么类型的对象,最终都会通过 Encoder 和 Decoder 转换为 InternalRow 格式进行处理。

    4. DataSet 转为 RDD

    通过 dataset.rdd 可以将 DataSet 转换为 RDD。此时,RDD 中的元素类型为 InternalRow。以下是示例代码:

    val sourceRDD = spark.sparkContext.parallelize(Seq(person("a", 18, 98.0), person("b", 20, 97.0), person("c", 18, 100.0)))val dataset = sourceRDD.toDS()val typeRDD: RDD[person] = dataset.rdd

    二、DataFrame 介绍

    1. DataFrame 是什么?

    DataFrame 是 SparkSQL 中一个表示关系型数据库表的函数式抽抽象,专为处理大规模结构化数据设计。DataFrame 具有以下特点:

    • 支持强类型和弱类型操作。
    • 具有结构化的 Schema 信息。
    • 具有类似表的操作方式。

    2. DataFrame 的创建方式

    DataFrame 可以通过以下方式创建:

  • toDF():将集合转换为 DataFrame。
  • createDataFrame():直接读取数据源创建 DataFrame。
  • DataFrameReader:通过 SparkSQL 读取框架读取数据。
  • 3. DataFrame 的数据操作案例

    以下是查看北京 PM 数据的统计案例:

    val spark = SparkSession.builder().master("local[6]").getOrCreate()import spark.implicits._import org.apache.spark.sql.functions._val df = spark.read  .option("header", true)  .csv("dataset/BeijingPM20100101_20151231.csv")df.show()// 统计每年每月的 PM 值val aggregatedDF = df  .select("year", "month", "PM_Dongsi")  .where("PM_Dongsi != 'NA'")  .groupBy("year", "month")  .agg(count("month") as "count")  .sort("count", "desc")  .show()

    三、DataFrame 与 DataSet 的区别

  • 表达含义:DataFrame 表示一个支持函数式操作的表,DataSet 表示一个类似 RDD 的对象。
  • 存储类型:DataFrame 存储的是 Row 对象,而 DataSet 可以存储任何类型的对象。
  • 操作方式:DataFrame 和 DataSet 的操作方式相似,但 DataSet 的操作更安全,因为它基于强类型。
  • 类型安全:DataSet 的操作在编译时确保类型安全,而 DataFrame 的操作在运行时才能确保类型安全。

  • 四、Row 对象

    Row 对象表示 DataFrame 中的每一行数据。它支持以下操作:

  • 数据获取:通过字段位置或字段名获取数据。
  • 样例类匹配:用于匹配 Row 对象。
  • 转换为具体对象:通过 as 方法将 Row 转换为特定类对象。
  • 以下是示例代码:

    case class Person(name: String, age: Int)val row: Row = Row("Tom", 18)row match {  case Row(name, age) => println(s"姓名: $name,年龄: $age")}

    DataFrame 和 DataSet 是 SparkSQL 中的两大核心组件,分别适用于强类型和弱类型数据的处理。理解它们的区别是掌握 SparkSQL 的关键。

    转载地址:http://lweq.baihongyu.com/

    你可能感兴趣的文章
    Nginx配置ssl实现https
    查看>>
    Nginx配置TCP代理指南
    查看>>
    Nginx配置——不记录指定文件类型日志
    查看>>
    Nginx配置代理解决本地html进行ajax请求接口跨域问题
    查看>>
    Nginx配置参数中文说明
    查看>>
    Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
    查看>>
    Nginx配置如何一键生成
    查看>>
    Nginx配置实例-负载均衡实例:平均访问多台服务器
    查看>>
    NHibernate学习[1]
    查看>>
    NIFI1.21.0_Mysql到Mysql增量CDC同步中_日期类型_以及null数据同步处理补充---大数据之Nifi工作笔记0057
    查看>>
    NIFI1.21.0_NIFI和hadoop蹦了_200G集群磁盘又满了_Jps看不到进程了_Unable to write in /tmp. Aborting----大数据之Nifi工作笔记0052
    查看>>
    NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增删改数据分发及删除数据实时同步_通过分页解决变更记录过大问题_02----大数据之Nifi工作笔记0054
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
    查看>>
    NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
    查看>>
    Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
    查看>>
    NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
    查看>>
    NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
    查看>>
    NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
    查看>>
    NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
    查看>>